In this thesis we investigate some problems on the uniqueness of mean curvatureflow and the existence of minimal surfaces, by geometric and analyticmethods. A summary of the main results is as follows.(i) The special Lagrangian submanifolds form a very important class ofminimal submanifolds, which can be constructed via the method ofmean curvature flow. In the graphical setting, the potential functionfor the Lagrangian mean curvature ow satisfies a fully nonlinearparabolic equation [formula omitted]where the ⋋j's are the eigenvalues of the Hessian D²u.We prove a uniqueness result for unbounded solutions of (1) withoutany growth condition, via the method of viscosity solutions (, ):for any continuous u₀ in ℝn, there is a unique continuous viscositysolution to (1) in ℝn x [0;∞).(ii) Let N be a complete, homogeneously regular Riemannian manifoldof dimN ≥ 3 and let M be a compact submanifold of N. Let Ʃ bea compact Riemann surface with boundary. A branched immersionu : (Σ,∂Σ) → (N,M) is a minimal surface with free boundary in Mif u(Σ) has zero mean curvature and u(Σ) is orthogonal to M alongu(∂Σ)⊑ M.We study the free boundary problem for minimal immersions of compactbordered Riemann surfaces and prove that Σ if is not a disk, then there exists a free boundary minimalimmersion of Σ minimizing area in any given conjugacy class ofa map in C⁰(Σ,∂Σ;N,M) that is incompressible; the kernel of i* : π₁(M) → π₁(N) admits a generating set suchthat each member is freely homotopic to the boundary of an areaminimizing disk that solves the free boundary problem. (iii) Under certain nonnegativity assumptions on the curvature of a 3-manifold N and convexity assumptions on the boundary M=∂N, we investigate controlling topology for free boundary minimal surfaces of low index:• We derive bounds on the genus, number of boundary components;• We prove a rigidity result;• We give area estimates in term of the scalar curvature of N.
View record