Canadian Immigration Updates

Review details about the recently announced changes to study and work permits that apply to master’s and doctoral degree students. Read more

Overview

Biomedical Engineers apply their knowledge in engineering, biology, and medicine to healthcare and medical device industries. Biomedical Engineering is a distinct field that encompasses engineering disciplines, biology, life sciences, medicine, clinical applications, and the improvement of human health. Since 2006, our PhD program has trained students in the fundamentals of Biomedical Engineering, providing extensive research experience in biomechanics, biomaterials, biochemical processing, cellular engineering, imaging, medical devices, micro-electro-mechanical implantable systems, and physiological modeling, simulation, monitoring, and control, as well as medical robotics. Graduates continue on to PhD programs as well as research and development positions in industry and other institutions.

What makes the program unique?

The Biomedical Engineering Program at UBC is a part of the School of Biomedical Engineering, which falls under both the Faculty of Applied Science and Faculty of Medicine. This unique interdisciplinary structure provides students with unparalleled access to engineering experts across varied Biomedical Engineering research areas at UBC. It emphasizes a balance of biomedical engineering and life science study with a focus on clinical and industrial application. Our graduates have gone on to become industry leaders, especially in the medical device industry, and provide a network of professionals within the community.

Biomedical Engineering at UBC is the only program in Canada to offer the Engineers in Scrubs (EiS) training program. The EiS program began as an NSERC-funded Collaborative Research and Training Experience (CREATE) program designed to foster innovation in medical technology by training biomedical engineers in clinical environments. Students receive a significant portion of their training in hospital settings, and the program focuses on the medical technology innovation process. This program complements the research training of MASc and PhD students and allows them to work closely with medical professionals in identifying clinical problems and developing a solution.

 

Apply Now

If you don't have a UBC Campus-Wide Login (CWL) please create an account first.
 

Program Enquiries

Still have questions after reviewing this page thoroughly?
Contact the program

Admission Information & Requirements

1) Check Eligibility

Minimum Academic Requirements

The Faculty of Graduate and Postdoctoral Studies establishes the minimum admission requirements common to all applicants, usually a minimum overall average in the B+ range (76% at UBC). The graduate program that you are applying to may have additional requirements. Please review the specific requirements for applicants with credentials from institutions in:

Each program may set higher academic minimum requirements. Please review the program website carefully to understand the program requirements. Meeting the minimum requirements does not guarantee admission as it is a competitive process.

English Language Test

Applicants from a university outside Canada in which English is not the primary language of instruction must provide results of an English language proficiency examination as part of their application. Tests must have been taken within the last 24 months at the time of submission of your application.

Minimum requirements for the two most common English language proficiency tests to apply to this program are listed below:

TOEFL: Test of English as a Foreign Language - internet-based

Overall score requirement: 93

Reading

22

Writing

21

Speaking

21

Listening

22

IELTS: International English Language Testing System

Overall score requirement: 6.5

Reading

6.0

Writing

6.0

Speaking

6.0

Listening

6.0

Property field_prog_lang_test_min

Other Test Scores

Some programs require additional test scores such as the Graduate Record Examination (GRE) or the Graduate Management Test (GMAT). The requirements for this program are:

The GRE is not required.

Prior degree, course and other requirements

Prior Degree Requirements

Applicants to the BME program should normally hold a research master's degree in engineering or a closely-related degree with significant technical, analytical and mathematical components (e.g., physics, biophysics, chemistry, computer science). Students with degrees in other fields (e.g., life sciences, kinesiology, physical therapy) may be considered for the program if they have adequate technical preparation. In exceptional cases, applicants from Canadian or US institutions who hold a bachelor's degree with an overall average in the A grade range and who demonstrate advanced research ability may be granted direct admission to our doctoral degree program. Please see the Faculty of Graduate and Postdoctoral Studies website for more information. Applicants from international institutions will have specific minimum admission requirements established by the Faculty of Graduate and Postdoctoral Studies.

2) Meet Deadlines

September 2025 Intake

Application Open Date
15 November 2024
Canadian Applicants
Application Deadline: 15 January 2025
Transcript Deadline: 31 January 2025
Referee Deadline: 31 January 2025
International Applicants
Application Deadline: 15 January 2025
Transcript Deadline: 31 January 2025
Referee Deadline: 31 January 2025

3) Prepare Application

Transcripts

All applicants have to submit transcripts from all past post-secondary study. Document submission requirements depend on whether your institution of study is within Canada or outside of Canada.

Letters of Reference

A minimum of three references are required for application to graduate programs at UBC. References should be requested from individuals who are prepared to provide a report on your academic ability and qualifications.

Statement of Interest

Many programs require a statement of interest, sometimes called a "statement of intent", "description of research interests" or something similar.

Supervision

Students in research-based programs usually require a faculty member to function as their thesis supervisor. Please follow the instructions provided by each program whether applicants should contact faculty members.

Instructions regarding thesis supervisor contact for Doctor of Philosophy in Biomedical Engineering (PhD)
Applicants should browse faculty profiles and indicate in their application who they are interested in working with. No commitment from a supervisor prior to applying is necessary, but contacting faculty members is encouraged.

Citizenship Verification

Permanent Residents of Canada must provide a clear photocopy of both sides of the Permanent Resident card.

4) Apply Online

All applicants must complete an online application form and pay the application fee to be considered for admission to UBC.

Research Information

Research Highlights

Recent research highlights include: Overdoes Detection Device, Surgical Screw Cover, Magnetic Drug Implant, Parkinson’s App Painless, and Inexpensive Microneedle System Non-Invasive Migraine Monitoring Technique

Research Focus

UBC Biomedical Engineering researchers work in a wide range of areas. Our main research themes include Cellular and Molecular Engineering (including Regenerative Medicine, Synthetic Biology, and Imumune Engineering); Imaging and Computational Biology (including AI & Multiscale Imaging, Bioinformatics/Systems Biology, and Computational Modeling & Automation); Human Interfacing Devices (including Therapeutic Delivery Systems & Nanodevices, Bionics & Bio-Sensors, Biomaterials, and Biomechanics/Injury Prevention).

We are now building capacity to increase research opportunities in areas of global importance including molecular and cellular engineering and synthetic biology, genomics and nano-devices, immune-engineering and advanced biomaterials, regenerative medicine, artificial intelligence and simulation systems with biomedical application, visualization and imaging from nanomolecular to physiological scales.

Tuition & Financial Support

Tuition

FeesCanadian Citizen / Permanent Resident / Refugee / DiplomatInternational
Application Fee$116.25$168.25
Tuition *
Installments per year33
Tuition per installment$1,838.57$3,230.06
Tuition per year
(plus annual increase, usually 2%-5%)
$5,515.71$9,690.18
Int. Tuition Award (ITA) per year (if eligible) $3,200.00 (-)
Other Fees and Costs
Student Fees (yearly)$1,116.60 (approx.)
Costs of livingEstimate your costs of living with our interactive tool in order to start developing a financial plan for your graduate studies.
* Regular, full-time tuition. For on-leave, extension, continuing or part time (if applicable) fees see UBC Calendar.
All fees for the year are subject to adjustment and UBC reserves the right to change any fees without notice at any time, including tuition and student fees. Tuition fees are reviewed annually by the UBC Board of Governors. In recent years, tuition increases have been 2% for continuing domestic students and between 2% and 5% for continuing international students. New students may see higher increases in tuition. Admitted students who defer their admission are subject to the potentially higher tuition fees for incoming students effective at the later program start date. In case of a discrepancy between this webpage and the UBC Calendar, the UBC Calendar entry will be held to be correct.

Financial Support

Applicants to UBC have access to a variety of funding options, including merit-based (i.e. based on your academic performance) and need-based (i.e. based on your financial situation) opportunities.

Program Funding Packages

The majority of PhD students are offered research assistantships (RAs) by faculty members. RAs are funded by research grants for specific projects which almost always constitute thesis projects. Although you will automatically be considered for an RA when submitting your online application, to successfully secure an RA appointment you are encouraged to make contact with a research supervisor. The number of RAs offered will vary depending on lab and research space as well as available funding.

From September 2024 all full-time students in UBC-Vancouver who start their PhD programs in the School of Biomedical Engineering will be provided with a minimum funding package of $35,000 for each of the first four years of their PhD. This funding package may consist of any combination of internal or external awards, teaching-related work, research assistantships, and graduate academic assistantships. Please note that research supervisors may provide funding packages that are greater than $35,000 per year.

Average Funding
Based on the criteria outlined below, 61 students within this program were included in this study because they received funding through UBC in the form of teaching, research, academic assistantships or internal or external awards averaging $37,837.
  • 28 students received Teaching Assistantships. Average TA funding based on 28 students was $6,360.
  • 55 students received Research Assistantships. Average RA funding based on 55 students was $24,643.
  • 6 students received Academic Assistantships. Average AA funding based on 6 students was $5,499.
  • 61 students received internal awards. Average internal award funding based on 61 students was $7,444.
  • 12 students received external awards. Average external award funding based on 12 students was $23,014.

Study Period: Sep 2022 to Aug 2023 - average funding for full-time PhD students enrolled in three terms per academic year in this program across years 1-4, the period covered by UBC's Minimum Funding Guarantee. Averages might mask variability in sources and amounts of funding received by individual students. Beyond year 4, funding packages become even more individualized.
Review methodology
Scholarships & awards (merit-based funding)

All applicants are encouraged to review the awards listing to identify potential opportunities to fund their graduate education. The database lists merit-based scholarships and awards and allows for filtering by various criteria, such as domestic vs. international or degree level.

Graduate Research Assistantships (GRA)

Many professors are able to provide Research Assistantships (GRA) from their research grants to support full-time graduate students studying under their supervision. The duties constitute part of the student's graduate degree requirements. A Graduate Research Assistantship is considered a form of fellowship for a period of graduate study and is therefore not covered by a collective agreement. Stipends vary widely, and are dependent on the field of study and the type of research grant from which the assistantship is being funded.

Graduate Teaching Assistantships (GTA)

Graduate programs may have Teaching Assistantships available for registered full-time graduate students. Full teaching assistantships involve 12 hours work per week in preparation, lecturing, or laboratory instruction although many graduate programs offer partial TA appointments at less than 12 hours per week. Teaching assistantship rates are set by collective bargaining between the University and the Teaching Assistants' Union.

Graduate Academic Assistantships (GAA)

Academic Assistantships are employment opportunities to perform work that is relevant to the university or to an individual faculty member, but not to support the student’s graduate research and thesis. Wages are considered regular earnings and when paid monthly, include vacation pay.

Financial aid (need-based funding)

Canadian and US applicants may qualify for governmental loans to finance their studies. Please review eligibility and types of loans.

All students may be able to access private sector or bank loans.

Foreign government scholarships

Many foreign governments provide support to their citizens in pursuing education abroad. International applicants should check the various governmental resources in their home country, such as the Department of Education, for available scholarships.

Working while studying

The possibility to pursue work to supplement income may depend on the demands the program has on students. It should be carefully weighed if work leads to prolonged program durations or whether work placements can be meaningfully embedded into a program.

International students enrolled as full-time students with a valid study permit can work on campus for unlimited hours and work off-campus for no more than 20 hours a week.

A good starting point to explore student jobs is the UBC Work Learn program or a Co-Op placement.

Tax credits and RRSP withdrawals

Students with taxable income in Canada may be able to claim federal or provincial tax credits.

Canadian residents with RRSP accounts may be able to use the Lifelong Learning Plan (LLP) which allows students to withdraw amounts from their registered retirement savings plan (RRSPs) to finance full-time training or education for themselves or their partner.

Please review Filing taxes in Canada on the student services website for more information.

Cost Estimator

Applicants have access to the cost estimator to develop a financial plan that takes into account various income sources and expenses.

Career Outcomes

8 students graduated between 2005 and 2013. Of these, career information was obtained for 7 alumni (based on research conducted between Feb-May 2016):

Sample Employers in Higher Education
British Columbia Institute of Technology
Mahidol University
Sample Employers Outside Higher Education
Cook Biotech Inc.
Response Biomedical Corp
AR Medical Technologies
MEA Forensic Engineers and Scientists
Sample Job Titles Outside Higher Education
Research Engineer
Manager, Product Development
Chief Operating Officer
CTO
Biomechanical Engineer
PhD Career Outcome Survey
You may view the full report on career outcomes of UBC PhD graduates on outcomes.grad.ubc.ca.
Disclaimer
These data represent historical employment information and do not guarantee future employment prospects for graduates of this program. They are for informational purposes only. Data were collected through either alumni surveys or internet research.
Career Options

The PhD program in Biomedical Engineering is designed to prepare students for employment in the public or private sector, or to pursue further studies. Graduates find employment at academic institutions and in high level research and development positions in industry and other institutions. Recent graduates have gone on to work at BCIT, Phillips, and Precision Nanosystems. A burgeoning field, ample opportunities exist in the medical instrument industry, pharmaceutical/biochemical industry, hospitals, medical research facilities and educational institutions, and regulatory bodies, governments, and industry associations.

Enrolment, Duration & Other Stats

These statistics show data for the Doctor of Philosophy in Biomedical Engineering (PhD). Data are separated for each degree program combination. You may view data for other degree options in the respective program profile.

ENROLMENT DATA

 20232022202120202019
Applications6465817853
Offers112822149
New Registrations91918118
Total Enrolment8983685544

Completion Rates & Times

This program has a graduation rate of 85% based on 29 students admitted between 2011 - 2014. Based on 17 graduations between 2020 - 2023 the minimum time to completion is 3.75 years and the maximum time is 8.88 years with an average of 5.75 years of study. All calculations exclude leave times.
Disclaimer
Admissions data refer to all UBC Vancouver applications, offers, new registrants for each registration year, May to April, e.g. data for 2022 refers to programs starting in 2022 Summer and 2022 Winter session, i.e. May 1, 2022 to April 30, 2023. Data on total enrolment reflects enrolment in Winter Session Term 1 and are based on snapshots taken on November 1 of each registration year. Program completion data are only provided for datasets comprised of more than 4 individuals. Graduation rates exclude students who transfer out of their programs. Rates and times of completion depend on a number of variables (e.g. curriculum requirements, student funding), some of which may have changed in recent years for some programs.

Upcoming Doctoral Exams

Friday, 29 November 2024 - 12:30pm - Room 200

Laura Stankiewicz
A Pipeline for Discovery-Based Research on Human T Cell Development: Integrating Spatial Omics and PSC-T Platforms

Monday, 9 December 2024 - 3:00pm - Dorothy Lam Boardroom, BC Cancer Research Institute, 675 West 10th Avenue

Jeanie Malone
Towards Endoscopic Optical Imaging of the Fallopian Tubes for Tubo-Ovarian Cancer Detection

Tuesday, 21 January 2025 - 1:00pm - 773, Robert H.N. Ho Research Centre, 2635 Laurel Street

Luke Johnson
Advanced Magnetic Resonance Imaging and Modelling of Legg-Calvé-Perthes Disease

Research Supervisors

Supervision

Students in research-based programs usually require a faculty member to function as their thesis supervisor. Please follow the instructions provided by each program whether applicants should contact faculty members.

Instructions regarding thesis supervisor contact for Doctor of Philosophy in Biomedical Engineering (PhD)
Applicants should browse faculty profiles and indicate in their application who they are interested in working with. No commitment from a supervisor prior to applying is necessary, but contacting faculty members is encouraged.
 
Advice and insights from UBC Faculty on reaching out to supervisors

These videos contain some general advice from faculty across UBC on finding and reaching out to a supervisor. They are not program specific.

 

This list shows faculty members with full supervisory privileges who are affiliated with this program. It is not a comprehensive list of all potential supervisors as faculty from other programs or faculty members without full supervisory privileges can request approvals to supervise graduate students in this program.

  • Servati, Peyman (Energy Systems, Emerging Micro/Nano Technologies)
  • Shadgan, Babak (Medical biotechnology diagnostics (including biosensors); Biomedical instrumentation (including diagnostics); Orthopedics; Sports medicine; Bone, skin and cartilage science; Central nervous system; Implantable Biosensing; sensor and system design, clinical application development; Wearable Biosensors; design and application development in health care and exercise sciences; Musculoskeletal, Sports & Exercise Medicine; Bone Fracture Healing; Spinal Cord Injuries)
  • Shakiba, Nika (Medical and biomedical engineering; Bioengineering; Cell competition; Cell engineering; Stem Cells; Synthetic biology)
  • Takahata, Kenichi (Biomedical Technologies, Emerging Micro/Nano Technologies)
  • Tam, Roger (Machine learning; Biomedical signal processing; Biomedical Design and Innovation; Biomedical Technologies; Computer Science and Statistics; Data Analytics; Medical Imaging; Machine Learning; Neurodegenerative diseases; Precision Medicine; Radiology)
  • Tang, Shuo (Biophotonics, biomedical optics, optical tissue imaging instrumentation, optical coherence tomography, multiphoton microscopy)
  • Tropini, Carolina (Microbiology; Medical and biomedical engineering; Physical sciences; Bacteria; Bacteriophages; Bioengineering; Bioinformatics; Biological and Biochemical Mechanisms; Biophysics; Gut microbiota; Inflammatory bowel disease)
  • Underhill, Michael (Musculoskeletal diseases, transcription factors, growth, cytokines, retinoid signalling pathway in chondrogenesis, osteogenesis, phenotype)
  • Vila-Rodriguez, Fidel (Brain stimulation Transcranial Magnetic Stimulation (TMS) Transcranial Direct Current Stimulation (tDCS) Theta-bust stimulation (TBS) Magnetic Seizure Therapy (MST) Depression Psychosis Schizophrenia )
  • Walus, Konrad (Nanoelectronic devices and circuits, quantum-dot cellular automata, single-electron transistors, quantum mechanical simulations)
  • Wang, Rizhi (Functional materials in materials engineering sciences; Regenerative medicine (including stem cells and tissue engineering); Orthopaedic implants, drug delivery biomaterials, anti-infection solutions.; Additive manufacturing, 3D structural designing.; Bone structure, mineralization and mechanics, bone metastasis, hip fracture and prevention.)
  • Wellington, Cheryl Lea (Alzheimer disease; dementia; metabolism; cardiovascular system; neurodegeneration; concussion; traumatic brain injury (TBI))
  • Wilson, David (orthopaedics, arthritis, mechanics, joints, hip, imaging, MRI, activity, Hip, knee, spine mechanics, causes and treatments of osteoarthritis, medical imaging and image processing, orthopedic sports medicine)
  • Wu, Lang (Biostatistical methods; Longitudinal data analysis, mixed effects models, missing data, hypothesis testing, biostatistics)
  • Yadav, Vikramaditya (Chemical engineering; Genomics; Medical and biomedical engineering; Bioactive Molecules; Biocatalysis; Bioinformatics; Biological and Biochemical Mechanisms; Biomass (Energy); Biomaterials; Bioprocess engineering; Bioremediation; Biotechnology; drug delivery; Drug discovery & development; Medical biotechnology; Metabolic engineering; Structural Tissue Engineering / Biomaterials; Synthetic biology; Technoeconomics; Tissue Engineering; Vaccines)
  • Zandstra, Peter (Medical biotechnology; Medical and biomedical engineering; Stem cell bioengineering; Bioengineering; Synthetic biology; Biomedical Engineering; Immuno-engineering; Biotechnology; Computational Biology; Computational modeling; Gene/Cell Therapy Systems; genomics; Immunology; personalized medicine; Regenerative medicine)

Pages

Doctoral Citations

A doctoral citation summarizes the nature of the independent research, provides a high-level overview of the study, states the significance of the work and says who will benefit from the findings in clear, non-specialized language, so that members of a lay audience will understand it.
Year Citation
2021 Dr. Shaikh used upright magnetic resonance imaging to study the effect of standing functional postures, compared to supine, on lumbopelvic muscle and bony geometry synchronously in adult spinal deformity patients. This work informs the way we study and understand this disease, and its future biomechanical modeling, mitigation, and treatment.
2021 Dr. Mohtajeb used open MRI to study anterior femoroacetabular impingement, a condition that occurs with subtle bony abnormalities within the hip. She developed and validated a hip model using MRI and motion data and used it to predict impingement during level walking, helping us understand how bony deformities cause hip pain and osteoarthritis.
2020 Dr. Esfandiari developed a system that uses medical image processing algorithms and artificial intelligence to enable surgeons to more clearly and accurately see where spine implants have been placed during a surgery, rather than waiting for a postoperative assessment. His system will reduce the re-operation rate for spine surgery patients.
2020 Dr. Hussain investigated the feasibility of using volumetric medical images for kidney cancer prediction and prognosis. He developed novel deep neural network-based approaches for kidney cancer detection, cancer grading, and staging for CT scans. This approach will improve our ability to detect and therefore treat kidney cancer.
2020 Dr. Baumeister developed computer programs to analyze brain images. When applied to neurodegenerative diseases such as Parkinson's Disease and Multiple Sclerosis, his study yielded novel insights into disease related changes to the brain's structure and function. This research contributes to our understanding and assessment of brain diseases.
2020 Dr. Ai developed a photo-acoustic imaging system through optical excitation and acoustic detection to illuminate the prostate from within the urethra using a transurethral probe. This technique will improve the detection and imaging of malignant tissue and prostate cancer.
2020 Dr. Luan explored optical sensing architectures to improve diagnostic sensitivity, accuracy, and economy. He developed two types of sub-wavelength grating-based sensors, which present an improved sensitivity compared to conventional counterparts. This will impact medical diagnostics and healthcare services, particularly in developing countries.
2020 Dr. Jayhooni developed a novel side-viewing Raman endoscopic catheter enabled with a micro-stepping actuator for detecting cancers in the respiratory system and other human organs. This catheter works for angle-resolved local Raman analysis with no aid of tissue labeling and can detect lesion-induced biochemical changes in vivo and in real-time.
2019 Dr. Yeh studied the biomechanics of aortic aneurysm and heart valves. His research identified the physical parameters affecting the stresses experienced by the aneurysm and blood flow. Combined with blood coagulation characterizations, his work can enhance the current management for aneurysm patients via patient-specific modelling.
2019 Dr. Lee explored ways to non-invasively stimulate the brain safely to treat Parkinson's disease symptoms. She investigated effects of electrical vestibular stimulation on brain activity and motor behaviours altered in Parkinson's disease. This work provided insights into neural mechanisms behind the effects and brain-behaviour relationships.

Pages

Sample Thesis Submissions

Further Information

Specialization

Biomedical Engineering is a multidisciplinary field that involves the application of engineering techniques and technologies to medical and healthcare areas. Opportunities for interdisciplinary education and research exist in areas such as biomechanics, biomaterials, biochemical processing, cellular engineering, imaging, medical devices, micro-electro-mechanical implantation systems, physiological modelling, simulation, monitoring and control, as well as medical robotics.

Faculty Overview

Program Identifier

VGDPHDBMEG
 

Apply Now

If you don't have a UBC Campus-Wide Login (CWL) please create an account first.
 

September 2025 Intake

Application Open Date
15 November 2024
Canadian Applicant Deadline
15 January 2025
International Applicant Deadline
15 January 2025
 
Supervisor Search
 

Departments/Programs may update graduate degree program details through the Faculty & Staff portal. To update contact details for application inquiries, please use this form.

Considering Vancouver as your next home?

This city won’t disappoint. It has it all: sea, parks, mountains, beaches and all four seasons, including beautiful summers and mild, wet winters with snow.