Joel Friedman
Research Classification
Research Interests
Relevant Thesis-Based Degree Programs
Affiliations to Research Centres, Institutes & Clusters
Recruitment
Computer Science Theory, Graph Theory, Combinatorics, Algebraic Topology applied to Combinatorics
Complete these steps before you reach out to a faculty member!
- Familiarize yourself with program requirements. You want to learn as much as possible from the information available to you before you reach out to a faculty member. Be sure to visit the graduate degree program listing and program-specific websites.
- Check whether the program requires you to seek commitment from a supervisor prior to submitting an application. For some programs this is an essential step while others match successful applicants with faculty members within the first year of study. This is either indicated in the program profile under "Admission Information & Requirements" - "Prepare Application" - "Supervision" or on the program website.
- Identify specific faculty members who are conducting research in your specific area of interest.
- Establish that your research interests align with the faculty member’s research interests.
- Read up on the faculty members in the program and the research being conducted in the department.
- Familiarize yourself with their work, read their recent publications and past theses/dissertations that they supervised. Be certain that their research is indeed what you are hoping to study.
- Compose an error-free and grammatically correct email addressed to your specifically targeted faculty member, and remember to use their correct titles.
- Do not send non-specific, mass emails to everyone in the department hoping for a match.
- Address the faculty members by name. Your contact should be genuine rather than generic.
- Include a brief outline of your academic background, why you are interested in working with the faculty member, and what experience you could bring to the department. The supervision enquiry form guides you with targeted questions. Ensure to craft compelling answers to these questions.
- Highlight your achievements and why you are a top student. Faculty members receive dozens of requests from prospective students and you may have less than 30 seconds to pique someone’s interest.
- Demonstrate that you are familiar with their research:
- Convey the specific ways you are a good fit for the program.
- Convey the specific ways the program/lab/faculty member is a good fit for the research you are interested in/already conducting.
- Be enthusiastic, but don’t overdo it.
G+PS regularly provides virtual sessions that focus on admission requirements and procedures and tips how to improve your application.
ADVICE AND INSIGHTS FROM UBC FACULTY ON REACHING OUT TO SUPERVISORS
These videos contain some general advice from faculty across UBC on finding and reaching out to a potential thesis supervisor.
Supervision Enquiry
Graduate Student Supervision
Doctoral Student Supervision
Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.
In this thesis, we discuss modelling with (virtual) k-diagrams a class of functions from ℤⁿ to ℤ, which we call Riemann functions, that generalize the graph Riemann-Roch rank functions of Baker and Norine. The graph Riemann-Roch theorem has seen significant activity in recent years, however, as of yet, there is not a satisfactory homological interpretation of this theorem. This may be viewed as disappointing given the rich homological theory contained in the classical Riemann-Roch theorem. For a graph Riemann-Roch function, we will be able to express the associated graph Riemann-Roch formula as a (virtual) Euler characteristic of the modelling (virtual) k-diagram. From the development of this approach, we obtain a new formula for computing the graph Riemann-Roch rank of the complete graph Kn.
View record
The girth of a graph is the length of the shortest cycle in a graph, and the abelian girth of a graph is the girth of the graph's universal abelian covering graph. We denote the abelian girth of a graph G as Abl(G) and show that for d-regular graphs on n vertices with d constant and n growing we have Abl(G) ≤ 6 log_{d-1} n plus a vanishing term. This can be seen as a version of the Moore bound for abelian girth. We also prove Girth(G) ≤ Abl(G)/3, which implies that any multiplicative improvement to the abelian girth Moore bound would also improve the standard Moore bound. Sheaves on graphs and two of their homological invariants, the maximum excess and the first twisted Betti number, were used in the proof of the Hanna Neumann Conjecture from algebra and may be of use in proving several related unresolved conjectures. These conjectures can be proven if certain sheaves called ρ-kernels have vanishing maximum excess. Ungapped sheaves have maximum excess equal to the first twisted Betti number, and it is easy to compute the maximum excess of a given sheaf in the case that the sheaf is not gapped. For general sheaves though, there is no known way of computing the maximum excess in polynomial time. We give several conditions that gapped sheaves must satisfy. These conditions include that a gapped sheaf must have edge dimension at least as large as the abelian girth of the underlying graph. The ρ-kernels are subsheaves of constant sheaves. We prove that gapped subsheaves of constant sheaves exist, implying that finding maximum excess of some ρ-kernels may be computationally difficult.
View record
For a fixed graph, B, we study a probability model of random covering maps of degree n. Specifically, we study spectral properties of new eigenvalues of the adjacency matrix of a random covering, and its Hashimoto matrix (i.e., the adjacency matrix of the associated directed line graph).Our main theorem says that if B is d-regular, then for every positive epsilon, the probability that a random covering has a new adjacency eigenvalue greater than 2(d-1)^(1/2) + epsilon tends to zero as n tends to infinity. This matches the generalized Alon-Boppana lower bound.For general base graphs, B, Friedman conjectured in that the new eigenvalue bound holds with 2(d-1)^(1/2) replaced with the spectral radius of the universal cover of B. We refer to this conjecture as the generalized Alon conjecture; Alon stated this conjecture in the case where B has one vertex, i.e., the case of random d-regular graphs on n vertices. However, for some non-regular base graphs B, we cannot yet prove any non-trivial new eigenvalue upper bound with high probability.We use trace methods, as pioneered by Broder and Shamir for random, d-regular graphs; these methods were eventually refined by Friedman to prove the original Alon conjecture, i.e., in the case where B has one vertex. Our methods involve several significant simplifications of the methods of Friedman.
View record
Master's Student Supervision
Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.
We studied Joshua Batson, Daniel A. Spielman, andNikhil Srivastava's Twice-Ramanujan Sparsifiers. On this basis, we try to generalize their potential function. Inspired by the idea of non-backtracking matrices, we designed the new potential formula that puts all eigenvalues on the complex plane. Following the construction of the twice Ramanujan sparsifier, we conclude some obstacles must be encountered to improve their bound.
View record
We investigate the peculiar properties of information theory when all random variables involved are linear functions of a given source endowed with the structure of a Z/2Z-vector space.We describe the coded caching problem and review the progress made in particular cases of the problem.We devise a new caching scheme for a special instance of the problem and extend some approaches in the coded caching literature to the linear case such that we can use our results in linear algebra to drive new lower bounds.We show one example within coded caching, with the linearity assumption, where our results in information theory lead to stronger bounds.Our results infer certain "qualitative" aspects of caching schemes, using the information they must contain, rather than giving a complete analysis of such schemes.
View record
If this is your researcher profile you can log in to the Faculty & Staff portal to update your details and provide recruitment preferences.